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Decentralized robust control of strongly interconnected uncertain systems is addressed in this 

paper. The uncertainties we consider here may include parameter uncertainty and input 

disturbance that may be nonlinear and (possibly fast) time-varying. We show specially how 

both internal and external uncertainties are taken into considerations. This work covers a broad 

class of large-scale systems since the current consideration renders all previous settings as 

special cases. Stability analysis with the proposed controllers is provided. 
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1. Introduction 

A large-scale system can be considered as a set 

of interconnected subsystems, which is often en- 

countered in practical applications, for example, 

power networks and transportation systems. The 

important trend in control design for these large- 

scale systems is decentralized control where the 

control law of each subsystem is based only on its 

own information. The advantage of this aspect in 

controller design is to reduce complexity and a 

formidable amount of information transmission 

and therefore allows the control implementation 

to be more feasible (Siljak 1991). The research 

on decentralized control has been prolific. Impor- 

tant and representative work on decentralized 

control of large-scale uncertain systems can be 

found in Gavel and Siljak (1989), Ikeda and 

Siljak (1990), Ohta et al. (1986), Sezer and 

Siljak (1:981), Siljak (1989), and their bibliogra- 

phies. 

For an uncertain large-scale system, it usually 

turns out that each subsystem may possess inter- 
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nal uncertainty. Besides, there may be uncer- 

tainties in the interconnections. The uncertainties 

we consider here may include parameter uncer- 

tainty and input disturbance that may be non- 

linear and (possibly fast) time-varying - their 

realizations are often unknown. It may be also 

difficult to acquire their statistical properties a 

priori. Therefore a potential approach for han- 

dling such uncertainty is to utilize the knowledge 

related to its possible bound. The controller 

design should then be based on only this knowl- 

edge. This is the spirit of the deterministic 

approach to uncertain large-scale systems, which 

we shall adopt in this paper. A survey of related 

work using this approach for centralized control 

design can be found in Corless and Leitmann 

(1988). 

The past work on decentralized robust control 

has been limited to the considerations of non- 

linear systems where only weak interconnections 

arise (Chen, 1988). Once strong interconnections 

arise, the above passive analysis may be some- 

times overconservative in terms of providing a 

quantitative measure of the threshold. Gavel and 

Siljak (1989) was among the fi.rst to study such 

an issue. Adaptive control is constructed, which is 

able to suppress the interconnection if its bound is 

proportional to the state norm. Later Chen et al. 
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(1991) proposed a non-adaptive control design 
for a setting with cone-bounded interconnection, 

which renders the previous bound into a special 

case. 

The present work extends the setting of  Chen et 

al. (1991) to arbitrary bound. Loosely speaking, 

the previous work considers linear bound and the 

current work considers nonlinear bound. 

2. Interconnected Systems 

Consider a class of  uncertain large-scale sys- 

tems that are composed of  N interconnected sub- 

systems S~ described by (throughout this paper, 

for the sake of brevity, arguments are sometimes 

omitted when no confusion is likely to arise) 

S,: ~ , ( t )= f , ( x , ( t ) ,  t )+  zlf ,(x,(t),  a,(t), t) 
+ [B,(x,(t) ,  t) + zIB,(x,(t) ,  
a , ( t ) , t ) ] .  

u i ( t )+  g,(x(t) ,  a,(t), t) 
x,(to) =x~0 ( 1 ) 

x ( t )=[x[ ( t ) ,  x f ( t ) ,  ". ", x ~ ( t ) ] ~ R  ~, 
N 

n = Yl n~ (2) 
i =1  

where i E N ,  N = { I ,  2, . . . , N } .  Here t ~ R  is the 

independent variables, x i ( t ) ~ R  ~' is the state, and 

u i ( t ) ~ R "  is the control. Uncertainty in the 

system description is modelled by an unknown 

Lebesgue measurable function o'~( �9 ): R--.X~, 

where the uncertainty bounding set Z '~cR ~' is a 

known compact set. The known functions f~( �9 ): 

R " ' x R  -,R ~' and B~( �9 ): R n ' •  . . . . .  and the 
(known or unknown) functions z/f,( �9 ): R~'• . 

•  ZIBi( �9 ): R " ' x X ~ •  . . . . .  and g~ 
( �9 ): R" ' x .S~xR- - ,R" '  are Lebesgue measurable 
in t and continuous in other arguments. 

Regarding the uncertain system ( I ) ,  some 

structural conditions are imposed on the uncer- 

tainty. Standard notation is employed. If the 

eigenvalues of a matrix E are real, A,,[~] and 

Au[~] (or A,~(~) and Au(z~)) denote the mini- 

mum and maximum eigenvatues of ~ .  Vector 

norms are Euclidean and matrix norms are the 

corresponding induced ones; thus II~ll=[,aM 
( ~ ) ] ~ .  

Assumption 1. Maching of Uncertainties. 

There exist continuous functions all( �9 ): R" 'X X~ 

• R--. R " ,  E~(-) :  R " ' x  X~x R - . R  . . . . .  and h,(" ): 
R " x X ~ x R - - . R  "'  such that 

z l f , (x ,  a~, t )=Bi(x~,  t )d , ( x ,  a~, t) (3) 

zIBi(xi, ai, t ) = B , ( x ,  t)Ei(xi ,  a~, t) (4) 

g,(x, a~, t ) : B ~ ( x ,  t)h~(x, a~, t) (5) 

Remark 1. Eqs. (3 )~ (5 )  impose constraints on 

the structure of the uncertain part, z:/fl, ~Bi ,  and 

interconnection, g~ once B; is given. These condi- 

tions imply that the uncertainty and interconnec- 

tion should lie within the range space of input 

matrix, B~. In general, this property can be satis- 

fied if/3~ has high enough rank (i.e., the system 

has enough inputs). 

3. Proposed Controllers 

We first choose a input vi( �9 ): Rn'•  R--,R n' for 

the nominal system (i.e., the system in absence of  

uncertain part and interconnection) such that the 

controlled nominal system is asymptotically sta- 

ble, 

Assumption 2. There exist a C ~ functions Vi 

( �9 ): Rn 'xR- - ,R+ and functions ;r,( �9 ), y2/( �9 ), 

~'3i( �9 ): R+--.R+, where ?'ig, )'2~ belong to class KR 

(see Appendix) and yaibelongs to class K (see 

Appendix),  such that for all (~e t ) ~ R " ' x R  

~',,(11~11)~ v,(6 t)~ r2,(l[~tl) (6) 
8V,(#, t)~_ OV,.(#, t)}'T(8, t)<-Y3,([lSII)(7) 

8t 88 
where 

f,(8, t )= f , (8 ,  t)+B,(8, t)v,(8, t) (8) 

The following assumption is an addit ional 

condition imposed on the uncertainty and inter- 

connection. 

Assumption 3. There exists a known constant 

pE, such that for all (x,, a.., t ) ~ R n ' x X i x R  

I 
min a,~,{-~-A.[E,(x,, ~,, t)-t-E[(xi, a,, t)]} 

> pE, > - I (9) 

Assumption 4. There exist non-decreas ing  

continuous functions ~bo(. ): R+--'R+, i, j ~ N  

such that for all (x, a~, t ) ~ R " • 1 6 3  
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N 
m a x  a,~Allli(x, al, t)l[~E~iAl[xA) (10) 

. i=I 

where 

II~(x, ai, t ) = d i ( x ,  al, t ) +  E A x ,  ai, t).  
vi(x~, t ) + h A x ,  ai, t) ( l l )  

The function Ca( .  )in (10) can be determined 

from the boundary values of the uncertain param- 

eters in of / / i  of( l  1) 

Remark  2. The requirement (9) is to assure 

that a given control acts in the desired direction. 

In view of the condition (10), much more general 

class of  uncertainty and interconnection is consid- 

ered in tlhis work. In Han and Chen (1991), the 

interconnection is bounded by a first order 

polynomial  of [[x~][. In Chen et al. (1991), 

uncertainty and interconnection are both bound- 

ed by first order polynomials. In Shi and Singh 

(1991), the uncertain system has a linear 

nominal system and the interconnection is bound- 

ed by a ;0 '^ order polynomial. The current consid- 

eration renders all previous settings as special 

cases. Practical examples that fall into the current 

class of  uncertain systems include, for example, 

robot hybrid control where uncertain portion is 

bounded by a second order polynomial  (Chen 

and ParAey, 1990) and continuous stirred tank 

reactor (CSTR) control where interconnection is 

bounded by an exponential function (Shu et al., 

1989). 

Now a class of  decentralized robust controllers 

are proposed as follows. 

uAxi, t ) = v i ( x l ,  t )+  vi(xi, t) (12) 

Vi(Xi, t ) = - l  ki( 1 + PE,)-lCti(Xi, t)t~i(Xi, t)(13) 

ei(Xi, t )=B~(xi ,  t)Vx, V,(xi, t) (14) 

. / if Vi>)'~Ael) 

~i(Xi, t '  :~1 ~i( Vi)~_~i~(~3i(~i)]_lj~=l[(r N Vi)] 2 

if V ~  ~Aei )  
(is) 

where the positive constants, ki and el,  are cho- 

sen by a designer, the function ~]i( �9 ): R+--,R+ is 

continuous and satisfies 

rl ~ r ~  z/i(rl) ~ r2i(r2), V rL, r2~ R+ 
~7i(0) >0,  r > ( ~  r/ i(r)  > 0  

In (15), the notation f o g ( x )  denotes f ( g ( x ) ) .  

Remark 3. Notice that the state vector of the 

other subsystems, xs, is not included in the 

proposed controller u i ( ' )  in (12). This implies 

that though one subsystem is interconnected with 

the other subsystems, only the information of  its 

own state is utilized in its control design. In other 

words, there is no communication needed among 

the subsystems for the control to be implemented. 

The control ui( �9 ) is continuous and of 
saturation-type due to the function/3i( �9 ) in (15). 

4.  Proper t i e s  o f  S y s t e m s  with  

Proposed  Contro l lers  

For  convenience, we describe the large-scale 
system S in a compact form as 

S: ) ~ ( t ) = f ( x ,  t ) + A f ( x ,  a, t ) + [ B ( x ,  t) 
+zJB(x,  a, t ) ] u ( t ) + g ( x ,  a, t) 

x( to)= Xo (16) 

where 

x0-[x30, x2r0, " ' "  , x ~ 0 ] ~ R "  
N 

u=-[u r, u~, "'" ,uu~]r~R m, m = ~ m i  

N 
a=-[aar, a~, . . .  , a ~ ] ~ R  ~, l = ~ l i  

i=l 

f i x ,  t ) - [ A ( x , ,  t) r, A(x2, t )L . .  , ,  
f~(xu, t ) z ] T ~ R "  

d / ( x ,  a, t)=--[df,(x,, a~, t) r, dfz(x2, (Y2, t) r, 
�9 " ,  AfN(xN, aN, t ) r ] r ~ R "  

B(x ,  t)--diag{Bl(xl,  t), B2(x2, t), 
�9 " ,BN(XN, t ) } ~ R  "*"~ 

~ B ( x ,  a, t) r=- diag{,dB~(xl, al, l), 

zJB2(x2, r t), " "  ,ABu(xu,  au, t ) ] ~ R  "• 
g(x ,  a, t)=-[gl(x, a~, t) r, g2(x, 62, t) r, 

�9 " ,g~,(x, aN, t ) r ] T ~ R "  

The following definition describes the desired 
system behavior. 

Definition 1 (Chen, 1986 and 1988; Corless 

and Leitmann, 1981 and 1988; Han, 1995) A 
feedback control 

p ( .  ) : [ p a r ( .  ) , p f ( .  ) , . . .  ,p~( .  )]r  (17) 

p ~ ( . ) :  R " •  mi, i = I , 2 , . . . , N ,  renders the 
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uncertain system S 

2 ( t ) - - f ( x ,  t ) + d f ( x ,  O-, t )+[B(x ,  t) 
+riB(x,  O-, t)]p(x, t )+g(x ,  O-, t) 

x(to)=Xo (18) 
practically stable if and only if there exists an r0 

> 0  such that the following properties hold. 

(i) Existence of solutions: The system (18) 

possesses a solution x( " ): [to, o o ) ~ R  n 

(ii) Uniform boundedness: Given any r ~ ( 0 ,  

co) and any solution x(  �9 ): [to, oo)--,R ~ of (18), 

there exists a d ( r )  < co such that IIx011--<r implies 

tlx(t)ll<_d(r) for all t ~ [ t ,  oo). 
(i/i) Uniform ultimate boundedness: Given any 

and ~-  >r0  and any r ~ ( 0 ,  co), there exists a 

finite time T ( r ,  f )  such that IIx01l_<r implies 

IIx(t)ll_< e for all t > / 0 + T ( r ,  e) .  
(iv) Uniform stabity: Given any ? > to, there 

exists a 8 ( ~ ) > 0  such that llx01[<_ ~(p)  implies [Ix 

(t)ll<_~ for all t>to. 

T h e o r e m  1. Subject to Assumption 1 ~ 4 ,  the 

uncertain large-scale system (16), under the 

decentralized control (12) 

u(x ,  t )=[u[(x~  t ) ,u~(x2,  t ) , - - . ,  
uT,(xN, t ) y  

is practically stable. 

Proof See Appendix 

R e m a r k  4. The reason why the function fl~( �9 ) 

in (15) is taken to be of saturation-type is that 
-1  2 the function [?'3i( " )] ~@( �9 ) is not assured to 

be well defined on [0, co), especially at 0. 

The following assumption addresses a special 

class of the bounding functions under which 

non-saturation type robust control is also appli- 

cable. 

A s s u m p t i o n  5 .  There exist a constant ~-/0 and 

non-decreasing continuous functions r  " ): R+  

- 'R+,  i, j C N ,  such that 

N 1 
m a x  ~, l [H(x,  O-i' t ) l l  ~ ~ i 0 ~ -  ' ~ '  ~'3~ 

S=l 

( H )  L/llx~ll) (19) 

for all ( x ,  oi, t ) ~ R ~ • 2 1 5  

T h e o r e m  2. Subject to Assumption I ~ 3  and 

5 under the decentralized control 

u(x ,  t ) = [ u r ( x ,  t ) ,u[ (x2 ,  t ) , . . . ,  
u~ (xN, t )F  

Ui(Xi ,  t )  = ~di(Xi, t )  ~- ~)i(Xi, t )  

v/(x/, t ) = - l k ~ ( l  + oE,)-~a~(x, ., t)fl~(x~, t) 

gi(x/, t)= ~i(V,.) 
1 u _ + ~ - .  E as[(~bs~~ ?`if1)( �88 (20) 
/r d =1 

where k~>0, SiC(N, co), the uncertain large- 

scale system (16) is practically stable. 

Proof See Appendix 

5. Specialization to Linear Systems 

In this section, we cosider the special case that 

the nominal subsystems are linear and time- 

invariant. 

S~: 2~=Aix/+zlf~(x~, O-i, t ) + [ B /  

q-,dBi(Xl, o'i, t ) ]u iq -g i (x  , G, t) 
Xi( to)  = X/O ( 2  l ) 

In Assumption 2, the nominal control is cho- 

sen as u~=J/xi such that ~ i = A i + B f f i  is Hur- 
witz and Lyapunov function is taken as V-(x/)= 

xrp, xi where p , > 0  is the unique solution of 

Lyapunov equation 

p ~+ ~y~rp i+  Q~=0, Q~>o (22) 

then the bounding functions 71,( " ), 72i( �9 ) and 

?'3,( �9 ) are of quadratic forms 

?',/(H) = A~,,(P3IIx,tl 2 
?'2,(H) =,~,(P~)llx/ll 2 
ne(llx~ll)= Am( Q~)llxi[I 2 (23) 

We consider the same class of uncertainty and 

interconnection as that of Shi and Singh 

(1991). 

A s s u m p t i o n  6. There exist positive constants 

[o, 's  such that for all (x, O-i, / ) ~ R n X S " ~ x R  

N r 
max  ~r,~z, tll]iKx, O-i, t)ll-<S~l~0~%~llxjll ~ (24) 

Then, two follwing controllers, saturation type 

and non-saturation type, are both applicable. 

First, the saturation type controller is 

1 1 t u~(x,, t ) = J / x ~ - T k d  +pE,)- a,.(x,, t )G(x i ,  t) 

(25) 
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ai(x~, t) = B~P~x~ (26) 

NAM(Pi) ~-~[ § ~ ]2 

if Vi > AM(p,.)E2i 
g~(x,, t ) =  :t 

N r ~ 

~i( V,)h 2kiA,~,~oe, j<L~=oAm(Pi)' ] 

if V;~AM(P~)e~ 
(27) 

The non-saturation type controller is 

1 
u~(x~, t) : - ] , x~-Tk , ( l  + ps,)-~ai(xi, t)l~i(x~, t) 

(28) 
~(x~-, t) = ~ (E- )  

(29) 

Here 33 is a constant with N < ~ j < ~ v .  

Remark  5. Shi and Singh (1991) also 

proposed a robust control for the systems consid- 

ered above, whose nominal parts are linear and 

time-invariant and interconnections are bounded 

by the slam of polynomials of I[x~l]. The proposed 

non-saturation type controller (28) is different 

from their one. In (28), a~(x~) is multiplied by ~, 

(x,) which is a r - 1  order polynomial  of V ~ 

(xi), bul in their control, ai(xr is multiplied by 
IIx~ll r~. 

6.  I l l u s t r a t i v e  E x a m p l e  

Consider the coupled inverted double pendu- 

lums which are subject to two distinct control 

inputs as shown in Fig. 1 (Gavel and Siljak, 

I ' l l  i :r!L. 

I " ' ' :  ] 

Fig. 1 Inverted double pendulums 

1989; Chen et el., 1991). The pendulums are 

interconnected through the nonlinear spring 

whose reaction force is proport ional  to a square 

of the spring deflection. The position a ( t ) ~  [0, l] 

of the spring is unknown and time-varying. 

Furthermore, the payload ms, i=1 ,2 ,  is also 

unknown with rn~=~z~+Zlm~(t). Here'. ~ is the 

nominal payload and Amg(t) is the uncertain 

payload. Using the state vector x~=(xgl xi2) r =(~?, 

0i)T, i = 1  2, the equations of motion are de- 

scribed as 

$I: ~'11 = x12 
g I 

.~ l~ =-~-Xu + m ~ -  ul - sign(xn--xm)o 

ka2 (xn -- x'21)2 roll 2 
8 2 :  -~2 I  ~ -  X22  

g 1 . �9 
~ 2~ =--/xz~ + ~p-2/~ U2-- slgn(x.,~ -- x~) 

t22 , ",2 
~ 2 - [ X 2 1  - -  X l  l } 

The controls proposed by Gavel and Siljak 

(1989) and Chen et al. (1991) are not applicable 

since there is uncertainty z/m~(t) in the control 

channel and the interconnection is bounded by a 

second order polymonial.  

For  simulation purpose, we take g :=  l = 1, ~ 

=1 ~2=0.5 ,  k = l ,  Iz/m~l~0.1, [Zlm2]~0.1, and 

choose the uncertainties as z / m ~ = - 0 . 1 ,  A/mz=0. 

1, and a ( t ) = 0  5 + 0 . 5  sin(20t).  The system is in 

the form of section 5 with 

A~=r0L 1 0 1 0 

We choose 

] 1 = [ - - 5  - 4 ] ,  ] z = [ - - 2 . 5  - 2 ]  

y~,=[ 0 l ] A2=[ 0 1 ] 
--4 - -4  ' - -4  --4 

such that all poles of the controlled nominal 

system locate at -2.  

The solutions of the Lyapunov equations are 

given by ( @ = I t ,  i = l  2) 

9 1 
8 8 

P I = [ ~ =  1 5 
8 32 
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I t  t �9 . e l  

-..< 
previous settings as special cases. The design 
proposed here, as compared with other work in 
decentralized control, is especially useful as one 
intends to tackle strongly interconnected systems. 

t 

Fig. 2 

4 I t  I R a  �9 * e  

x l m  

- 4  

dl 4 4 T t m  

State history of  subsystem 1 

t t : t  4 T t m  . t  

Fig. 3 State history of  subsystem 2 

The control is then obtained as (k i=  1, ~i=3, i =  
1,2) 

Ut = -- 5Xn -- 4XL2-- (0. 069X, + 0.017X12) �9 
(1 .76+ 12.46 V~ 118.1 V~) 

zl2 = -2 .5x21-  2x22 - (0.15x21 + 0. 038x22),, 
(1 .96+ 16.0 V~z's + 118.2 ]72) 

where the Lyapunov functions are given by 

VI = 1.125x 2] + 0.25xllx12 + 0.156 x22 

V2 = 1. 125xZt +O.25x2~x22+O. 156 x222 

Figs. 2 and 3 represent the controlled system 
responses x: and x2, respectively. 

6. Conclusions 

The focus of  the controllers presented in this 
work is on the compensation of  uncertainty and 
strong interconnection among subsystems. We 
show specially how both internal and external 
uncertainties are taken into considerations. Only 
very mild condition is required for the intercon- 
nection bound, as the bound can be nonlinear. 
This work may cover a broad class of large-scale 
systems since the current consideration renders all 
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Appendix 

Definition 1. 1) A function 7("  ): R.-- ,R+ 
belong to class K if and only if it is continuous 
and satisfies 

r~ <_ rz-~r(r~)~ y( r2)V r~, rzER+ 
r(0) =0,  r > O ~ r ( r ) > O  

2) A fum:tion 7( �9 ): R+--,R. belongs to class KR 
if and only if it belong to K and lira 7( r ) :=~176 

r ~  

Proof of Theorem 1. Take the Lyapunov func- 
tion cand~idate for the system (16) 

N 

V(x, t )= ~k,r Vi) (a.I) 
i = l  

where V, is the Lyapunov function for the 
nominal system of ith subsystem and r  ) 
belongs to KR and strictly increasing since the 
derivative is taken as l~,.(xi, t), that is, 

deAV,.)__) if V,.>~'2,(E) 

- !, , ,(  v, l  

if Vi~r2,(e,) 
(a.2) 

(notice that the derivative is positive.) 
First, we consider the case that 73~ belong to 

class KR, then extend it to the case that ;'3i belong 
to class K. For the former, rli(V~) in (a.2) is 
chosen to be 1. 

Subject to (6), it follows that 

( r r,)(llx,ll) ~ r v,) ~ ( C,o r2,)(llx,ll) (a.3) 

Since the functions (r176 7h)( " ) and (r176 7zi)( �9 ) 
are strictly increasing continuous, there exit ;/1( �9 ): 

R.--,R+ and 72( " ): R+- 'R+ which belong to class 
KR such that 

N 

r,( I]xll ) ~ E k,( C,o r, ,)( llx,ll ) 
i = l  

N 

< ~ k,r Vi) (a.4) 
i = 1  

N 

r2(llxll) > 22 k,(r r2i)((lx,ll) 
i = !  

N 

E k,r (a.5) 
i = l  

for any given uncertainty realization, the total 
time derivative of V along any trajectory of the 
controlled system S under (12) ~ (15) is given by 

N 

(/(x, t )= ~2k,~b,( V,.) 

~1"" dV, . . i  

d_~r dV, dV,-.= 
= ,~k ,  dv.  [ ~ i -+-~-~-( : ,+ B.(I ,+ E3" 

v, + I3iH~)] 

N 1 . 

i = 1  ( . ~ V i [  ~ t V i  

Using the inequality 2ab:~a2+ b 2, a, b ,ER,  
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�9 d ~ i  N N d~ i  --~ 
~/TE:-ila, ll,.=E 1r = L.~=lk,~Klla,IIN , N ,  r 

N l 2 d@i 2 N 2 

1 z N 

- ~ -  ,F~- fT-~  u ,', - 2 - ~  '.*'u ( a . 7 )  
k t I V i J  j = I  

Upon introducing (a.7), one has 
N ,4,4. N :'/ N 

< Xnle %~)2. _t %nS~,~,~ 
i=1 t g V i  i = l j = l  

u dqSi + N  u 
- ~ ] r - k i  _~i~ 73, T X , 4 ; , ]  (a.8) 

i = l L  ( . lVi  j = l  J 

if V~(x,., t) > 7~(e~), by (a.2), 

I V  o = - k ,7~ , -~7~ , [ ( 7~ ,  72,- )( V,-)] -:t" 
N 

71~-1)( E.)]2 + ~ - 3 !  r (a.9) v r ( r  N ~' 
j=~L= ~ j = l  

From (6) in Assumption 2, it follows that 

By (a.10), 

~,~,(llx,ll)[(7~,o ),~,-1)] ,>_l 
(r r , i -1)(~)  _> r 

(a.10) 

(a. l l)  
(a.12) 

Note that this holds for both E-(x~, t ) >  72~(s~) 
and l/~-(x~, t)_<72,(e~). It follows that 

--  [(  731o r21--1)( V i ) ] - -1N [ (g j io  71i-1)( V I ) ]  2 
j = I  

+ ~_<_0 (a.13) 
j = l  

Consequently, if Vi(x~, t) > 7z~(e~), 

d ~ i  N N 2 
- k ~ 7 3 , : + T . j ~ _  r ---kiTa~ (a.14) 

If i,5(x,, t)-~'2i(~'i), 

. d r  ~ _ N ~ . ~  
- -  f~ i~ iT-Ta i  , ~ -  2", ql)i 

GtVi g" j = l  

: - -  k i~3 i - - -~3 i [  ( )13i( ~i) l--l .~[  ( ~jiO ~li--1) o 

N ~ ( E.)]2 + T ~ ]  r (a.15) 
j=I 

By (a.10), it follows that 

( r  ~ 71 i - i ) (K ' )  > r  (a. 16) 
r ~ (r 711-1~ ~'2i)('Si) (a. 17) 

Upon introducing (a. 16) and (a.17), if Vi(. ,~i ,  

t) ~ 7Me,), 

r V i r j= l  
N 

N j~i~3i~j2i (  ~ i  ) + c i  ( a . 1 8 )  --" ki~31" 2 ~31(~'/)  -- 

w h e r e  

c i  = i O T l i - l o z 2 i ) ( e i ) ]  2 ( a . 1 9 )  
j = i  

For any x ~ R ' ,  without losing generality, we can 
consider that 

E(x , ,  t ) >  )'2,(el), i = l ,  2, . . .  ,q (a.20) 
E(x~, t)<-- T2~(e~), i = q + l ,  q+2 ,  . . .  ,N 

(a.21) 

Then, by (a.14) and (a.18), 

~Z(X, t ) ~ - -  k i ) % i + ~  ~, 1 
"= i = q + l  7 3 i ( e i )  

(a.22) 

Since all functions on the right-hand-side of (a. 
23) (except the last constant term) are continuous 
and strictly increasing, it follows that there exists 
a strictly increasing continuous function 2"a( �9 ): 

R+-~R+ such that 

N N 1 I -N 2"1 

(a.23) 

Finally, it turns out that for all (x, t ) ~ R ' •  

l)(x, t) ~ -- y3(l[x[[) + C (a.24) 

where 

N 
C =  Y. ci (a.25) 

i--q+1 

In other words, l)" is negative definite as [Ixll is 
sufficiently large. 

if 73, belongs to class K, it is not guaranteed 

that in ~'3(llxll) in (a.23) goes to infinity as Ilxll 
goes to infinity. Then, it may happen that the 
limity of 73(fix[I) is less than C. In this case, if we 
choose ~7~(" ) in (a.2) to be a function that belongs 
to class KR, this problem can be cleared. 

In view of Corless and Leitmann (1981) and 
Chen (1988), By (a.4), (a.5), and (a.24), Theo- 
rem 1 has been proved. 

Proof  of Theorem 2. This analysis is similar 
with that of Theorem 1. In view of (a.6), 
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< X - ~ [ r e  . d r "  _ I k d ~ i , a  z 9(x,. L 'dv  ' 

+ r §  II .=~l?'3~id] (a.26) 

Using the' inequali ty 2 a b < _ a 2 + b  z, a ,  b , ~ R ,  

dd) N N d& - 
k , d , ~  ta, l lEl? '~ .r  'dV. [ia~ll , 8~ ?'~ r 

Vi  j = l  d=l  i 

< 2 ~ z 1 8i -z  

2 N 

Oi \ ~l V i / .i= 

Upon  using (a.27) in (a .26) ,  

U d d  U (~ U tl~ i _~ i --2 

i=1 ~ ~/ i i= l  j = t  

N 1 N z d~_< 2 z 

- -  d O i ff ~ 
+ , ] r II 

By (20) (rji(V,.) is taken to be 1), 

u dd  ~ 3  ~ - -  ~ i  u i  --2 

/= l  ~ V i  i=1 z, j = l  

- -  k i ~ ? ' a ,  �9 + ?'31 .= ~=,[ did, ~--E~Wr 
N 

i= l  

- - i = ~ l  ? ' 3 i . :  '= J i ~  ? ' 1 i - 1 ) (  g i ) ]  2 

-2 )] " 
- -  ,~Ji  < -  - -  i ~ _ l k i ~ a l  

(a.27) 

(a.28) 

(a.29) 

The inequal i ty  in (a.29) is due to the fact that  

[I ~-.o?'.-')( v,)] ~- r V.~. l 
(a.30) 

The argument  is s imilar  to (a. 10 ) - - ( a .12 ) .  The 

second term of the r ight-hand side of (a.28) is 

bounded  by a constant  as shown in the fol lowing:  

N 2 

<- r (a.31) 

Then,  by combin ing  (a .28) ,  (a.29) , and (a .31) ,  

one has 

N 

I?(x, t ) ~  - ~,k,.~,(llx,ll)§ 
i=l  

-<-- 73(11.~11) + C (a.32) 
where 

C : - - -  f i~ (a.33) 

and the strictly increasing cont inuous  function ?'3 

( �9 ) which belongs to class KR can be chosen 

such that 

N 

?'3(ltxll) ~ :E k,?'3,(llx,ll) V x (a.34) 
i = I  

Consequent ly ,  the result of  Theorem 2 fol lows 

(see the p roof  of  Theorem I ) .  


